1. A plane wall is a composite of two materials, A and B. The wall of material A has uniform heat generation $q = 1.5 \times 10^4 \text{ W/m}^3$, $k_A = 75 \text{ W/m.K}$, and thickness $L_A = 50 \text{ mm}$. The wall material B has no generation with $k_B = 75 \text{ W/m.K}$, and thickness $L_B = 20 \text{ mm}$. The inner surface of material A is well insulated, while the outer surface of material B is cooled by a water stream with $T_w = 30^\circ \text{C}$ and $h = 1000 \text{ W/m}^2 \cdot \text{K}$. Determine the temperature T_1 of the insulated surface and the temperature T_2 of the cooled surface.

2. Attached to a flat wall of temperature T_b is a plate of thickness b, length L, and width W (see figure). The plate is made of a highly conductive metal and, as a consequence, its temperature is practically uniform. The plate is bathed on all its exposed sides by a fluid of temperature T_w. The heat transfer coefficient has the same value h on all the surfaces wetted by the fluid. The plate described until now is attached to the wall by means of a layer of glue of thickness t and thermal conductivity k. Derive an expression for the heat transfer rate that passes from T_b to T_w through the glue-plate system.

3. An uninsulated wire suspended in air generates Joule heating at the rate of $q' = 1 \text{ W/m}$. The wire is a bare cylinder of radius $r = 0.5 \text{ mm}$ and the temperature difference between it and the atmosphere is 30°C. It is proposed to cover this wire with a plastic sleeve of electrical insulation, the outer radius of which will be $r_o = 1 \text{ mm}$. The thermal conductivity of the plastic material is $k = 0.35 \text{ W/m.K}$. Will the plastic sleeve improve the wire’s ambient thermal contact, or will it provide a thermal insulation effect?
To verify your answer, calculate the new wire-ambient temperature difference when the wire is encased in plastic.

4. Steam in a heating system flows through tubes whose outer diameter is $D_1=3\text{cm}$ and whose walls are maintained at a temperature of 120°C. Circular aluminium fins ($k=180\text{W/m}.^{\circ}\text{C}$) of outer diameter $D_2=6\text{cm}$ and constant thickness $t=2\text{mm}$ are attached to the tube. The space between the fins is 3mm, and thus there are 200 fins per unit length of the tube. Heat is transferred to the surrounding air at $T_a=25^{\circ}\text{C}$, with a combined heat transfer coefficient of $60\text{W/m}^2.^{\circ}\text{C}$. Determine the increase in heat transfer from the tube per meter of its length as a result of adding fins.

5. A thin shell made of copper ($k=386\text{W/m}.^{\circ}\text{C}$, $\rho=8900\text{ kg/m}^3$, $C=385\text{J/kg}.^{\circ}\text{C}$) of diameter 5mm and thickness 0.3mm drops off a conveyor vertically down to the ground. The temperature of the shell is initially 75°C. While it is falling to the ground that is some 30m below, the shell cools by losing heat to the ambient air at 20°C via a constant average heat transfer coefficient of $90\text{ W/m}^2.^{\circ}\text{C}$. Determine the temperature of the shell as it hits the ground.

6. Aluminium sheet of dimensions $50\times100\times2\text{ mm}$ is exposed on both sides to an ambient fluid at 25°C with an average heat transfer coefficient of $7\text{ W/m}^2.^{\circ}\text{C}$. Is it proper to consider the aluminium ($k=236\text{W/m}.^{\circ}\text{C}$, $\rho=2702\text{ kg/m}^3$, $C=896\text{J/kg}.^{\circ}\text{C}$) sheet as a lumped system for transient analysis? If the answer is yes, determine the time constant of the first order system. If the initial temperature of the plate is 100°C how long does one have to wait for the temperature to become 50°C.

7. During quenching, a cylindrical rod made of 1080steel ($k=43\text{W/m}.^{\circ}\text{C}$, $\rho=7801\text{ kg/m}^3$, $C=473\text{J/kg}.^{\circ}\text{C}$), 1cm diameter, and 20cm in length is first heated to 800°C and then immersed in a water bath at 100°C. The heat transfer coefficient can be taken as $250\text{W/m}^2.^{\circ}\text{C}$. Calculate the time required for the rod to reach 250°C.

8. Consider a thermocouple junction, which may be approximated to a sphere, used for temperature measurement in a gas stream. The convection coefficient between the junction surface and the gas is $h=400\text{W/m}^2.\text{K}$, and the junction thermophysical properties are $k=20\text{W/m}.\text{K}$, $\rho=8500\text{ kg/m}^3$ and $C=400\text{J/kg}.\text{K}$. Determine the junction diameter needed for the thermocouple to have a time constant of 1s. If the junction is at 25°C and is placed in a gas stream that is at 200°C, how long will it take for the junction to reach 199°C?

9. It is required to determine the depth to which a change in surface temperature is felt during a 24hr period in underground water pipes. If the original soil temperature is 8°C and the surface temperature suddenly drops to -7°C, determine the depth upto which the freezing temperature penetrates. Assume that soil is dry and $\alpha=0.003\text{cm}^2/\text{s}$.
10. A porcelain wall is 8mm thick with temperature 25°C. One of the walls is suddenly brought to 80°C and maintained thereafter. Estimate the point on the wall where the temperature is 40°C after a time of 2 seconds. $\alpha = 0.004\text{cm}^2/\text{s}$.

11. A thick concrete slab, initially at 400K, is sprayed with a large quantity of water at 300K. How long will the location, 5cm below the surface, take to cool to 320K?

12. A concrete wall, 20 cm thick, at an initial temperature of 20°C is suddenly exposed to pure steam at atmospheric pressure. If the thermal resistance of the condensate flowing down the wall is negligible, estimate the rate of steam condensation on 160m² wall area after (a) 10s (b) 3hrs.

13. Consider a 1.6 cm thick plate of carbon steel at the initial temperature $T_i = 600^\circ$C. This plate is plunged at $t = 0$ in a bath of water at a temperature $T_w = 15^\circ$C. The heat transfer coefficient is assumed constant and $h = 10^4 \text{ W/m}^2 \text{ K}$. Also, $k = 40 \text{ W/m K}$ and $\alpha = 0.1 \text{ cm}^2 / \text{ sec}$. Calculate the time t when temperature in the mid plane of the steel plate drops to $T_e = 100^\circ$C. Determine also the corresponding temperature in a plane situated 0.2cm under one of the cooled surfaces. For a same time interval t, calculate the heat released by the plate as a fraction of total heat transfer that would be released in the limit $t \to \infty$.

14. A large aluminium plate 50 mm thick and initially at 200°C is suddenly exposed to the convective environment at 70°C. Calculate the temperature at a depth of 10 mm from one of the faces 1 minute after the plate has been exposed to the environment. Also find out the energy removed from the plate per unit area during this period. Take $C_p = 900 \text{ J/kg K}$, $k = 215 \text{ W/m K}$, $h = 500 \text{ W/m}^2 \text{ K}$, $\rho = 2700 \text{ kg/m}^3$, $\alpha = 8.5 \times 10^{-5}$ m²/s.

15. A two dimensional rectangular plate is subjected to the boundary conditions as shown. Derive an expression for steady state temperature distribution.